Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
There are calls for research into the historical evolutionary relationships between humans and their commensals, as it would greatly inform models that predict the spread of pests and diseases under urban population expansion. The earliest civilizations emerged approximately 10 000 years ago and created conditions ideal for the establishment and spread of commensal urban pests. Commensal relations between humans and pests likely emerged with these early civilizations; however, for most species (e.g. German cockroach and black rat), these relationships have formed relatively recently—within the last 5000 years—raising the question of whether others could have emerged earlier. Following comparative whole genome analysis of bed bugs,Cimex lectularius, belonging to two genetically distinct lineages, one associated with bats and the other with humans, coupled with demographic modelling, our findings suggests that while their association with humans dates back potentially hundreds of thousands of years, a dramatic change in the effective population size of the human-associated lineage occurred approximately 13 000 years ago; a pattern not found in the bat-associated lineage. The timing and magnitude of the demographic patterns provide compelling evidence that the human-associated lineage closely tracked the demographic history of modern humans and their movement into the first cities. As such, bed bugs may represent the firsttrueurban pest insect species.more » « lessFree, publicly-accessible full text available May 1, 2026
-
Free, publicly-accessible full text available May 1, 2026
-
Free, publicly-accessible full text available May 1, 2026
-
Abstract The common bed bug, Cimex lectularius, is a globally distributed pest insect of medical, veterinary, and economic importance. Previous reference genome assemblies for this species were generated from short read sequencing data, resulting in a ~650 Mb composed of thousands of contigs. Here, we present a haplotype-resolved, chromosome-level reference genome, generated from an adult Harlen strain female specimen. Using PacBio long read and Omni-C proximity sequencing, we generated a 540 Mb genome with 15 chromosomes (13 autosomes and 2 sex chromosomes - X1X2) with an N50 > 30 Mb and BUSCO > 90%. Previous karyotyping efforts indicate an XY sex chromosome system, with 2n=26 and X1X1X2X2 females and X1X2Y males; however significant fragmentation of the X chromosome has also been reported. We further use whole genome resequencing data from males and females to identify the X1 and X2 chromosomes based on sex biases in coverage. This highly contiguous reference genome assembly provides a much-improved resource for identifying chromosomal genome architecture, and for interpreting patterns of urban outbreaks and signatures of selection linked to insecticide resistance.more » « less
-
Free, publicly-accessible full text available July 1, 2026
-
Canonical models of intestinal regeneration emphasize the critical role of the crypt stem cell niche to generate enterocytes that migrate to villus ends. Burmese pythons possess extreme intestinal regenerative capacity yet lack crypts, thus providing opportunities to identify noncanonical but potentially conserved mechanisms that expand our understanding of regenerative capacity in vertebrates, including humans. Here, we leverage single-nucleus RNA sequencing of fasted and postprandial python small intestine to identify the signaling pathways and cell–cell interactions underlying the python’s regenerative response. We find that python intestinal regeneration entails the activation of multiple conserved mechanisms of growth and stress response, including core lipid metabolism pathways and the unfolded protein response in intestinal enterocytes. Our single-cell resolution highlights extensive heterogeneity in mesenchymal cell population signaling and intercellular communication that directs major tissue restructuring and the shift out of a dormant fasted state by activating both embryonic developmental and wound healing pathways. We also identify distinct roles of BEST4+ enterocytes in coordinating key regenerative transitions via NOTCH signaling. Python intestinal regeneration shares key signaling features and molecules with mammalian gastric bypass, indicating that conserved regenerative programs are common to both. Our findings provide different insights into cooperative and conserved regenerative programs and intercellular interactions in vertebrates independent of crypts which have been otherwise obscured in model species where temporal phases of generative growth are limited to embryonic development or recovery from injury.more » « less
-
Abstract Hybridization between species provides unique opportunities to understand evolutionary processes that are linked to reproductive isolation and, ultimately, speciation. However, the extrinsic factors that limit hybridization are poorly understood for most animal systems. Although the spatial ecology of individuals in natural habitats is fundamental to shaping reproductive success and survival, analyses of the spatial ecology of hybrids and their parental groups are rarely reported. Here, we used radiotelemetry to monitor wild rattlesnakes across an interspecific hybrid zone (Crotalus scutulatus and Crotalus viridis) and measured movement parameters and space use (utilization distributions) of individuals to evaluate the hypothesis that hybridization resulted in transgressive or atypical movement patterns. Unexpectedly, of the spatial metrics we investigated, we found that hybrids were very similar to parental individuals. Nonetheless, hybrids did show increased patchiness of core utilization distributions, but this result is likely to be driven by increased habitat patchiness in the hybrid zone. Overall, we did not find evidence for overt extrinsic barriers to hybridization associated with spatial ecology; thus, we suggest that the close evolutionary history between the two parental species and their ecological and behavioural similarities are likely to increase the probability of hybridization events in this unique region of New Mexico.more » « less
-
Gossmann, Toni (Ed.)Abstract Understanding and predicting the relationships between genotype and phenotype is often challenging, largely due to the complex nature of eukaryotic gene regulation. A step towards this goal is to map how phenotypic diversity evolves through genomic changes that modify gene regulatory interactions. Using the Prairie Rattlesnake (Crotalus viridis) and related species, we integrate mRNA-seq, proteomic, ATAC-seq and whole genome resequencing data to understand how specific evolutionary modifications to gene regulatory network components produce differences in venom gene expression. Through comparisons within and between species, we find a remarkably high degree of gene expression and regulatory network variation across even a shallow level of evolutionary divergence. We use these data to test hypotheses about the roles of specific trans-factors and cis-regulatory elements, how these roles may vary across venom genes and gene families, and how variation in regulatory systems drive diversity in venom phenotypes. Our results illustrate that differences in chromatin and genotype at regulatory elements play major roles in modulating expression. However, we also find that enhancer deletions, differences in transcription-factor expression, and variation in activity of the insulator protein CTCF also likely impact venom phenotypes. Our findings provide insight into the diversity and gene-specificity of gene regulatory features and highlight the value of comparative studies to link gene regulatory network variation to phenotypic variation.more » « less
An official website of the United States government
